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Idea

* The famous end to end paper [1] suggests that
functions placed at low levels of a system may
be redundant or of little value when compared
with the cost of providing them at that low level

* One of the cornerstones of the Internet Design

— Strictly avoiding placing application specific functions in the
network.

[11J .H. Saltzer, D. P. Reed, and D. D. Clark, “End-to-end Arguments in System Design,” ACM Trans. Comput. Syst., vol. 2, no. 4, Nov. 1984.
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Idea

« Retransmission of packets inside the network on a
segment of an end-to-end path

— especially when packets are frequently dropped on path
segments with a very short round-trip time (RTT), and the end-

to-end RTT is very long
« Similar techniques: Automatic Repeat Request (ARQ) in

wireless links

— but it is a result of the separate development of Internet
standards and link layer standards
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Our Contribution

* We consider only retransmission, not ordering

* Questions to answer: given the end-to-end RTT, the RTT
on a path segment, and the packet loss probabilities of
the various parts of an end-to-end path,

— how long should a system ideally store packets for retries?
— how large is the potential benefit from in-network
retransmission?

* We never delay packets
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Our Contribution

« We introduce a stochastic model that describes the
relationship between packet drop probabilities in
different path segments, RTT, and buffer size.

« We investigate the influence of a local loss recovery
mechanism: caching packets in an intermediate node
and loss detection before packets being arrived at the
destination using the above model.

— We derive the impact of each parameter on the system behavior.
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Local Optimizations On a Path (LOOP)

 We utilize a cache and a loss detector at the m
start and the end of the path segment with K o TN
high packet loss: i S I S R R

sender S emits packets with rate A -
cache C additionally stores a copy of packets LOOP architecture
loss detector L confirms reception of each packet

C retransmits if timer rto, expires

R acknowledges packets to S

p;: packet loss probability in segment |
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Applications of LOOP

* This closely matches IETF LOOPS

— tunnel mode: C encapsulate packets in addition to caching

— transparent mode: C caches packets together with a hash
identifier that is calculated from immutable header fields

* Recursive Internetworking Architecture (RINA)

— evaluating retransmissions in stacked layers with different
scopes

* Information-Centric Networking (ICN)
— R2T: a close proposal in ICN
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LOOP Analysis

* We use a Continuous-Time Markov Chain (CTMC) with
finite states

« Cache can be modelled as an M/D/1/N queuing model
— Poisson arrival
— deterministic service time
— N: buffer size (1 = p1) (A + peae/rtos)
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Solving the CTMC

« EZ2E packet drop prob.: Pe2e = P1 + (1 — p1)pep2 + (1 — p1)(1 — pyp2)p3
- Arrival rate at the cache: A= (1=pi)(A+ ftz)
. _ 1—po _ A1
Service rate ——— I — it —
tt ' w
«  The M/M/1/N equivalent: roadat
1—p EM]=M(1—7n)
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Cache Size
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Effects of rtt,
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Fixed Cache Size Independent of p, and p,
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End-System Analysis

« Buffer could be modelled as an
M/D/1/ queue

Expected buffering time
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Observations

* Non-linearity dependence between filling the cache and
the packet loss probability

« Cache size has the least impact on its utilization:

— irrespective of the size, it can be fully utilized by higher packet
loss probabilities

« With LOOP: lower retransmission rate and expected

caching time at S than without LOOP being deployed in
the network

15
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Future Work

» Trade-offs involved in re-sequencing
« Using NACKs
« Sequence of or even nested loops

16
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Thank youl!

OCARINA” project (http://www.mn.uio.no/ifi/english/ research/projects/ocarina/
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