
Lightweight and Flexible Single-Path
Congestion Control Coupling

Safiqul Islam
Networks and Distributed Systems Group
Department of Informatics
University of Oslo

NOMS’18 Conference
April 26, 2018

Dissertation Committee
Joerg Ott
TU Munich

Colin Perkins
Univ of Glasgow

Tor Skeie
Simula Research Laboratory

Supervisors
Michael Welzl
Univ of Oslo

Stein Gjessing
Univ of Oslo

Motivation

28.07.2020 2

Problem Statement

Ø Congestion control probes for the available capacity to reach a certain
notion of fairness

Capacity

Buffer

More queue growth è more delay and packet drops

Problem Statement

28.07.2020 4

Flow 1

Flow 2

Flow 3

Flow n

CC

CC

CC

CC

Each Flow has its own
Congestion Control (CC) module

Competition leads
to:

Host

• More queue growth• More packet drops• More delays• Fairness problems

28.07.2020 5

Would it be possible to
solve these problems?

YES

6

Flow 1

Flow 2

Flow 3

Flow n

CC

CC

CC

CC

Single
Congestion
Controller

Host

28.07.2020 7

RFC2140

1997 1998 1999

Congestion
Manager
(CM)

Ensemble
TCP (E-TCP)

1999 2005

Ensemble Flow
Congestion
Management (EFCM)

TCP FAST
START

Improves the TCP
Initialization phase

Mostly designed
having TCP in mind,
except CM

Flow 1

Flow 2

Flow 3

Flow n

Single
Congestion
Controller

This might work well for flows
having the same tuple, but what
happens when the bottleneck
changes?

8

Host

Host

Flow 1

Flow 2

Flow 3

Flow n

Single
Congestion
Controller

Single
Congestion
Controller

• Add another CC?
• Add another scheduler?
• What about previous CC.

state?

9

28.07.2020 10

Simple and
Flexible

Ensure a
common
bottleneck

Make it
Generic ---
Apply to
different
CCs

Reduce
overall
delay and
losses

#1 #2 #3 #4

11

Flow 1

Flow 2

Flow 3

Flow n

CC

CC

CC

CC

Flow State Exchange (FSE)
Flow State Exchange

Simple and
Flexible

#1

28.07.2020 12

Simple and
Flexible

#1

Two Variants

Passive

Maintains the state of the
ensemble and makes it
available to only the flow
requesting a new rate.

- Less signaling
- Minimal Changes
- Homogeneous RTTs

Active

Actively initiates communication
with all the flows.

28.07.2020 13

Ensure a
common
bottleneck

#2

Shared Bottlenecks

q Managing flows with a common FSE: only across a common bottleneck
Ø This was ignored in prior work (CM, E-TCP, EFCM)
Ø But how to know?

1. Multiplexing (same 5-, actually 6-tuple)
a) Fits rtcweb (coupled-cc proposed in RMCAT) – but only for same

source/destination hosts, and our own TCP-in-UDP (TiU) encapsulation.
2. Configuration (e.g. common wireless uplink)
3. Measurement

a) Never 100% reliable, but: different receivers possible!
b) Historically considered impractical, but recent work:

David Hayes, Simone Ferlin-Oliveira, Michael Welzl: "Practical Passive Shared
Bottleneck Detection Using Shape Summary Statistics, IEEE LCN 2014, 8-11
September 2014

28.07.2020 14

#3 Apply to different CCs

Loss-based

Delay-based

Simple Sophisticated

RAP TFRC TCP

LEDBAT NADA GCC

28.07.2020 15

Reduce overall loss and delay

#4

Evaluations

16

TCP congestion control coupling

Ø Novel ACK clock mechanism for initializing IW
Ø RFC 2140bis
Ø TCP-IN-UDP encapsulation
Ø TCP CCC
Ø Combining different CCC (LEDBAT and TCP)

ANRW’16
TCPM WG Draft

GI’18
IMCEC’16

IRTF ICCRG Draft

Coupled Congestion Control for RTP Media

Ø RAP and TFRC
Ø WebRTC congestion controllers (NADA and GCC)
Ø I-D – IETF RMCAT WG

SIGCOMM CCR’14, CSWS’14

NOMS’16
RFC editor Queue

Evaluations

28.07.2020 17

Coupled Congestion Control for RTP Media

Ø RAP and TFRC
Ø WebRTC congestion controllers (NADA and GCC)
Ø I-D – IETF RMCAT WG

SIGCOMM CCR’14, CSWS’14
NOMS’16
RFC editor Queue

RAP and TFRC

18

q Every time the congestion
controller of a flow
determines a new sending
rate, the flow calls UPDATE
☞ FSE updates the sum of all rates,

calculates the sending rates for
all the flows and distributes
them

q Results were not good
☞ Details are in the paper

for all flows i in FG do

FSE_R(i) = (P(i)*ΣCR)/ΣP
send FSE_R(i) to the flow I

end for

RAP and TFRC

Idea: reduce the rate on congestion as one flow.

q No congestion: increase the aggregate by I/N
where I is the increase factor.

q Congestion: Proportionally reduce the rate to
emulate the congestion response of one flow.

Ø Avoid over-reacting: set a time (2RTTs) to react only
once in the same loss event.

19

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g
e
 Q

u
e
u
e
 L

e
n
g
th

of Flows

FSE
Without FSE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 2 4 6 8 10 12 14 16 18 20

P
a
c
k
e
t
L
o
s
s
 R

a
ti
o
 %

of Flows

FSE
Without FSE

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16 18 20

P
a

c
k
e

t
L

o
s
s
 R

a
ti
o

 %

of Flows

FSE
Without FSE

RAP TFRC

Average
Queue

Packet
Loss
Ratio

Receiver makes assumptions about
sending rate (expected length of loss

interval) è loss event ratio p
calculation wrong è sender too

aggressive

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

L
in

k
U

til
iz

a
tio

n
 %

of Flows

FSE
Without FSE

Throughput - 1 flow
 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

L
in

k
 U

ti
li
z
a
ti
o
n
 %

of Flows

FSE
Without FSE

Link
Utilization

20

Using priorities to “protect” the app-limited from the greedy flow (RAP)

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30 35 40

T
h
ro

u
g
h
p
u
t

Capacity

Flow #1
Flow #2

Link Utilization

High-priority (1) application limited flow #1 is hardly affected by a
low-priority (0.2) flow #2 as long as there is enough capacity for flow
1

21

Why passive version doesn’t always work: TCP example

22

1:1 1:2 1:3 1:4 1:5

RTT ratio

0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

Fa
irn

es
s

in
de

x

Jains Fairness Index of 2 TCP Flows over a dumbbell topology

Why??
TCP throughput is RTT dependent

NADA and GCC

q RTT independent fairness
Ø Rate update frequency

☞ Fixed interval, RTT independent

-> Passive version works
Ø Less signaling
Ø Simple request-response server
Ø Minimal changes
Ø Can work as a stand-alone tool

23

Media pause and resume (NADA)

24

Without FSE With FSE

Delay spike removed

Faster convergence, Fairness

Delayed feedback test (GCC)

q To show algorithm’s robustness against OS’s disturbance
Ø Delay between stream 1 and the FSE is varied
Ø Delay between stream 2 and the FSE is 0

25

Fixed delay, 50ms Fixed delay, 100ms
Uniformly distributed
random delay, between
1 and 100

Evaluations

28.07.2020 26

TCP congestion control coupling

Ø Novel ACK clock mechanism for initializing IW
Ø RFC 2140bis
Ø TCP-IN-UDP encapsulation
Ø TCP CCC
Ø Combining different ccc (LEDBAT and TCP)

ANRW’16
TCPM WG Draft

GI’18
IMCEC’16

ICCRG Draft

ACK-clocking to avoid bursts

27
 0

 100

 200

 300

 400

 500

 600

 700

 5 5.5 6 6.5 7

P
a

ck
e

t
se

q
u

e
n

ce
 n

u
m

b
e

r

Time (s)

Connection 2
Connection 3

 0

 100

 200

 300

 400

 500

 600

 700

 5 5.5 6 6.5 7

P
a

ck
e

t
se

q
u

e
n

ce
 n

u
m

b
e

r

Time (s)

Connection 2
Connection 3

q A flow joining with a large share
from the aggregate can create
bursts in the network

– If not paced
q Our approach:

– Maintain the ack-clock of TCP
– Using the ACKs of conn 1 to clock

packet transmissions of
connection 2 over the course of
the first RTT when connection 2
joins

– Similarly, we make use of the
ACKs of connections 1 and 2 to
clock packet transmissions of
conn 3

– Requires slightly more changes to
the TCP code

Drive an RFC2140 update to reflect the current state of
the art, caveats on sharing TCB and pacing.

FCT of a short flow competing with a long flow

28

0 2 4 6 8 10
Capacity (Mbps)

0

10

20

30

40

50

60

70

80

90

FC
T

of
sh

or
tfl

ow
s

(R
TT

s)

1. Short flow
2. Short flow - coupled (no-ack-clock)
3. Short flow - coupled (ack-clocked)
Reduction 2 vs. 1 (%)
Reduction 3 vs. 1 (%)

0

20

40

60

80

100

R
ed

uc
tio

n
(%

)

TCP-CCC (FreeBSD implementation)

29

Avg. RTT Loss ratio

Avg. goodput
Prioritization

Combining Heterogeneous Congestion Controllers

30

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

cw
nd

 (p
kt

s)

Time (s)

'ledbat-cwnd'
'tcp-cwnd'

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 50 100 150 200 250

cw
nd

 (p
kt

s)

Time (s)

'ledbat-cwnd'
'tcp-cwnd'

Without FSE With FSE

This will allow us to combine WebRTC DATA Channel (SCTP) and Video (GCC) [Ongoing]

28.07.2020 31

IETF Deployments

RFC2140

1997 1998 1999

CM E-TCP

1999 2005

EFCM

FSE,
RFC ed-
queue

2016

RFC2140bis
WG adopted
draft, TCPM

2015

TCP-CCC,
ICCRG
Draft

2017

TCP
FAST
START

Source code available at: www.bitbucket.org/safiqul
http://safiquli.at.ifi.uio.no/coupled-cc

Implementations: 1) FreeBSD 2) Chromium Browser 3) ns-2

http://www.bitbucket.org/safiqul
http://safiquli.at.ifi.uio.no/coupled-cc

28.07.2020 32

Changing algorithm
aggression

Reducing aggression can improve performance (Paper-1), but there are exceptions: it can violate the underlying CC algorithm’s
assumption. This, in turn, can make the CC counteract on the imposed decision (paper-2 and draft-1).

RTT Connections with homogeneous RTTs can use both active (paper 1) and passive coupling (paper-2, paper-4, paper-5). However, it
is recommended to use an active version for connections with heterogeneous RTTs (paper 1).

Rate updates Congestion control mechanisms that update their rates not as a function of RTTs but e.g. at a fixed interval can use simple
passive version (paper 2).

Receiver- side Logic If the CC decisions of a connection are influenced by receiver-side CC logic, this should be incorporated into the design of a
coupled congestion control solution (paper 1).

Statefulness It is recommended to incorporate states in a coupling solution when a congestion mechanism is stateful, e.g, TCP (paper 4,5 and
draft 2). The design approaches for the stateless mechanisms are simpler (paper 1 and 2).

Ensured Common
Bottleneck

Whenever it is enforced that connections take a common path, e.g., connections are multiplexed (e.g., WebRTC flows) or
encapsulated (e.g., VPNs), a coupled congestion control mechanism can always be used (paper 1, 2,4,5 and draft 1,2).

Pacing Giving a large share of the aggregate creates sudden bursts for window based congestion control, and therefore some form of
pacing is required (paper 3). This can be achieved with a timer or by gradually handing over the share of the aggregate.
Avoiding any increased burstiness due to CC coupling requires an algorithm to be active.

Combining Different
CCs

Combinations of two different congestion control mechanisms can avoid bad interaction; for example, a loss-based controller can
benefit from a delay-based controller which reacts on a congestion episode earlier (paper 4).

Thanks!

28.07.2020 33

Q&A

28.07.2020 34

28.07.2020 35

Paper Publication

1 Safiqul Islam, Michael Welzl, Stein Gjessing, and Naeem Khademi, Coupled congestion control
for RTP media, ACM Computer Communication Review, volume 44, Issue 4, October 2014

2 Safiqul Islam, Michael Welzl, David Hayes, Stein Gjessing, Managing Real-Time Media Flows
through a Flow State Exchange, IEEE NOMS 2016, Istanbul, Turkey, 25-29 April 2016

3 Safiqul Islam, Michael Welzl, Start Me Up: Determining and Sharing TCP's Initial Congestion
Window, ACM, IRTF, ISOC Applied Networking Research Workshop 2016 (ANRW 2016)

4 OpenTCP: Combining Congestion Controls of Parallel TCP Connections, IEEE IMCEC 2016

5 Safiqul Islam, Michael Welzl, Kristian Hiorth, David Hayes, Greville Armitage, Stein Gjessing,
Single-Path TCP Congestion Control Coupling, IEEE INFOCOM GI 2018

IETF ID-1 Safiqul Islam, Michael Welzl, Stein Gjessing, Coupled Congestion Control for RTP Media,
Internet-draft draft-ietf-rmcat-coupled-cc-06, Mar 2017.

IETF ID-2 Michael Welzl, Safiqul Islam , Kristian Hiorth, Jianjie You: " TCP-CCC: single-path TCP
congestion control coupling", Internet-draft draft-welzl-tcp-ccc-0, Oct 2016.

IETF ID-3 Joe Touch, Michael Welzl, Safiqul Islam, Jianjie You: TCP Control Block Interdependence,
Internet-draft draft-touch-tcpm-2140bis-02, Jan 2017.

Backup Slides

28.07.2020 36

28.07.2020 37

Simple and
Flexible

#1

FSE

Flow 1

Flow 2

Update_rate()

Flow n

New_Rate

New_Rate

New_Rate

Update_rate()

Update_rate()

Store Information

Calculate Rates

Passive Coupling

28.07.2020 38

Simple and
Flexible

#1

FSE

Flow 1

Flow 2

Update_rate()

Flow n

New_Rate

New_Rate

New_Rate

Store Information

Calculate Rates

Active Coupling

 5

 6

 7

 8

 9

 10

 11

 12

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e
 Q

u
e

u
e

 L
e

n
g

th

Number of Flows

FSE
Without FSE

RAP TFRC

Average
Queue
Length

 7.5

 8

 8.5

 9

 9.5

 10

 10.5

 11

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g
e
 Q

u
e
u
e
 L

e
n
g
th

Number of Flows

FSE
Without FSE

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20

P
a

c
k
e

t
L

o
s
s
 R

a
ti
o

 %

Number of Flows

FSE
Without FSE

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14 16 18 20

P
a

c
k
e

t
L

o
s
s
 R

a
ti
o

 %

Number of Flows

FSE
Without FSE

Packet
Loss
Ratio

Why?

39

RAP and TFRC

What’s going on? (simple algorithm)

q Queue drains more often without FSE
Ø Should emulate the congestion response of one flow

☞ FSE: 2 flows with rate X each; one flow halves its rate: 2X è 1 ½X
☞ When flows synchronize, both halve their rates on congestion, which halves the aggregate

rate
☞ We want that ! 2X è 1X

 0

 2

 4

 6

 8

 10

 12

 14

 15 15.5 16 16.5 17 17.5 18 18.5 19

Q
ue

ue
 s

iz
e

(p
kt

s)

Time (s)

 0

 2

 4

 6

 8

 10

 12

 14

 15 15.5 16 16.5 17 17.5 18 18.5 19

Q
ue

ue
 s

iz
e

(p
kt

s)

Time (s)

With FSE Without FSE

40

CtrlTCP in DataCenter

41

VM-1

VM-2H
yp
er
-v
is
or

DCN
weighted_rate 60%

40%
weighted_rate

update_call()

update_call()

VM-1

VM-2Hy
pe
r-v
is
or

DCN
weighted_rate 60%

40%
weighted_rate

update_call()

update_call()

1:1 1:2 1:3 1:4

Flows ratio (VM1:VM2)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fa
irn

es
s

in
de

x

ctrlTCP
uncoupled

LEDBAT

42

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14 16 18 20

L
in

k
U

til
iz

a
tio

n
 %

of Flows

Open
Closed 60

 65

 70

 75

 80

 85

 2 4 6 8 10 12 14 16 18 20

A
ve

ra
g

e
 Q

u
e

u
e

 L
e

n
g

th

of Flows

Open
Closed

Evaluation – an application limited flow and one greedy flow (RAP)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25

S
e

n
d

in
g

 R
a

te
 (

M
b

p
s)

Time (s)

Flow 1
Flow 2 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25

S
e
n
d
in

g
 R

a
te

 (
M

b
p
s)

Time (s)

Flow 1
Flow 2

FSE
Without FSE

FSE-controlled flows proportionally reduce the rate in case of congestion; without FSE,
synchronization causes app-limited flow to over-react

43

Prioritization test

44

One way base delay, 50ms, streams started with the same priorities.
Priorities are changed at 50 seconds.

GCCNADA

Round-trip time fairness – GCC streams

One-way delays of s1, s2, s3, s4 and s5 are 10ms, 25ms, 50ms, 100ms, and 150ms respectively,
and bottleneck capacity 4Mbps

45

Without FSE With FSE

Faster convergence, Fairness

Design

q Basic idea similar to FSE in draft-ietf-rmcat-
coupled-cc

Ø To emulate one flow’s behavior (… but easy to tune)
Ø Keep a table of all current connections c with their priorities

P(c); calculate each connection’s share as P(c) / Σ(P) *
Σ(cwnd); react when a connection updates its cwnd and use
(cwnd(c) – previous cwnd(c)) to update Σ(cwnd)

46

TCP states

q Once in CA, Slow-Start(SS) shouldn’t
happen as long as ACKs arrive on any
flow è only SS when all flows are in
SS

q Avoid multiple congestion reactions
to one loss event:
Ø TCP already has Fast Recovery (FR), use

that instead

47

15 20 25 30 35 40 45
Time (s)

0

20

40

60

80

100

cw
nd

(p
ac

ke
ts

)

SS for both upon timeout

Connection 1
Connection 2

20 25 30 35 40 45
Time (s)

20

30

40

50

60

70

80

90

100

110

cw
nd

(p
ac

ke
ts

)

1 loss

Connection 1
Connection 2

E-TCP

EFCM

Basic TCP changes

The required changes to TCP:

Ø This function call, to be executed at the beginning of a TCP connection ‘c’ :
register(c, P, cwnd, sshtresh);
returns: cwnd, ssthresh, state

Ø This function call, to be executed whenever TCP connection ‘c’ newly
calculates cwnd:

update(c, cwnd, sshthresh, state);
returns: cwnd, ssthresh, state

Ø This function call, to be executed whenever a TCP connection ‘c’ ends:
leave(c)

48

