
Department of Informatics
Networks and Distributed Systems (ND) group

How to Control a TCP: Minimally-Invasive
Congestion Management for Datacenters

ICNC 2019, Honolulu
18. 02. 2019

Safiqul Islam, Michael Welzl, Stein Gjessing

2

What is this about?

• In multitenant datacenter, the guest OSes of clients may be
diverse and utilize an Internet-like mix of old and new TCP
congestion control implementations

• This may put some users at a disadvantage, depending on how
aggressively their congestion control probes for capacity
– unfair users may have an incentive to obtain a larger share of the capacity

by opening multiple TCP connections à.unsatisfied customers!

3

What is this about?

Sending rate of two VMs, with 1 flow in
VM1 and 1 to 4 flows in VM2

4

Prior work

• Mechanisms such as Seawall [1], VCC [3] and AC/DC [2] successfully
achieve this sender-side control by running dedicated congestion control
algorithms as part of the hypervisor infrastructure
– But: how should the new algorithm that is running as part of the

hypervisor communicate with the the guest OS?

• Seawall alone takes care of the congestion control
– CC implementations need to defer all congestion control decisions to the

hypervisor (asking for allowance before sending a packet)_
– the sender and receiver side are altered, and bits from the header are re-

purposed to implement the necessary signaling

[1] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the data center network,” in Proc. of NSDI, 2011.
[2] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and A. Akella, “AC/DC TCP: Virtual congestion control enforcement for datacenter networks,” in Proc. of SIGCOMM, 2016
[3] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown, I. Abraham, and I. Keslassy, “Virtualized congestion control,” in Proc. of the ACM SIGCOMM, 2016.

5

Prior work

• AC/DC do not require updating the guest OS at all,
– which is a significant advantage: it does not require cooperation of tenants

to update the OS (if they do bring their own OS),
• which reduces burden and allows to enforce cooperative behavior

• Changes the receive window (rwnd) as a means to control TCP’s behavior
– A sender can therefore only increase the sending rate as quickly as the

TCP implementation inside the guest OS allows

6

Prior work on congestion management

• Datacenter capacity management
– Access is controlled at the edges (EyeQ), FairCloud (per flow queues

at the switches), Seawall, AC/DC, VCC
• Single-path congestion control coupling

– By sharing a number of state variables
• Multiplexing

– By merging application layer datastreams onto a single transport layer
connection

• Multi-path congestion control coupling
– MPTCP’s coupling assumes that flows could take a different path, and

ideally also traverse different bottlenecks

7

Our contribution

• A new interface (ctrlTCP_int) to communicate between TCP
in the guest OS and a hypervisor.
– A set of TCP connections are controlled via this interface

• Extended our ctrlTCP algorithm that emulates the behavior of
a single TCP congestion controller
– Supports prioritization (for practical management of both

inter- and intra-VM capacity allocation)

• Show the efficacy of our solution using both ns2 and
FreeBSD

8

CtrlTCP interface

VM-1

VM-2H
yp
er
-v
is
or

DCN
weighted_rate 60%

40%
weighted_rate

update_call()

update_call()

VM-1

VM-2Hy
pe
r-v
is
or

DCN
weighted_rate 60%

40%
weighted_rate

update_call()

update_call()

• A middle ground can be found by keeping the guest OS congestion control intact,
yet allowing a controlling entity to overrule its decisions

• ctrlTCP operates strictly on the control path:
• communicates signals cc in the guest OS and the hypervisor

• not needed to even examine or count the outgoing or incoming packets

9

CtrlTCP algorithm

• Each TCP session communicates with an entity that we call a
Coupled Congestion Controller (CCC)

– typically makes decisions that combine the collected
knowledge that it receives from all TCP instances that talk
to it - thereby “coupling” them in some way

– A CCC can operate in a hypervisor or in an OS

S. Islam, M. Welzl, H. Kristian, D. Hayes, G. Armitage, and S. Gjessing, “ctrlTCP, reducing latency through coupled heterogeneous multi-flow TCP congestion control,” IEEE GI 2018

10

ctrlTCP
TCP Session CCC

register(c, p, cwnd, sshtresh)

accept (cwnd, ssthresh)
Initialization:

First conn:
initialize a group

update(c, cwnd, sshthresh, state);

returns: cwnd, ssthresh, state
Update

Leave(c)
Leave
Remove entry from the
list
If last conn: delete group

11

Changes in the TCP code

register(c, p, cwnd, sshtresh);
returns: cwnd, ssthresh, state

update(c, cwnd, sshthresh, state);
returns: cwnd, ssthresh, state

leave(c)

Initialization: executed at the
beginning of the session!

Update: executed whenever a TCP
session newly calculates its cwnd

Leave: executed whenever a TCP
session is terminated

12

Evaluation

1:1 1:2 1:3 1:4

Flows ratio (VM1:VM2)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Fa
ir

ne
ss

in
de

x
ctrlTCP
uncoupled

• Implementation
• FreeBSD 11 kernel with state shared across the freely available

VirtualBox hypervisor
• ns-2 simulator

the source code is available at: http://safiquli.at.ifi.uio.no/tcp-ccc/

Fairness between two VMs, with 1 flow in VM1 and 1 to 4 flows in VM2 across a 10Mbit/s⇥100ms bottleneck

13

Applicability of simulation results

Internet BDP (1500 byte packets)

10 Gbit/s, 100 μs [1] 10 Mbit/s, 100 ms 83.3

10 Gbit/s, 10..100 μs: [2] 1..10 Mbit/s, 100 ms 8.3 .. 83.3

1 Gbit/s, 100 μs: [3] 10 Mbit/s, 10 ms 8.3

1 Gbit/s, 250 μs: [4] 25 Mbit/s, 100 ms 208.3

Referenced datacenter conditions are comparable to common Internet bandwidth X delay products

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” ACM SIGCOMM, 2010
[2] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based congestion control for the datacenter,” ACM SIGCOMM, 2015.
[3] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu, “HyGenICC: Hypervisor-based generic IP congestion control for virtualized data centers,” IEEE ICC, May 2016
[4] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. R. Dogar, “Friends, not foes: Synthesizing existing transport strategies for data center networks,” ACM SIGCOMM, 2014

14

Results – mean Q length and loss ratio

Mean queue length and loss ratio as the RTT ratios between 2 flows is varied

minRTT 20ms, maxRTT 200ms, Bottleneck: 10Mb, preprocessed TMIX background Traffic (taken from 60
minute trace of campus traffic of university of north Carolina – approximate load 50%, RTT of the background
traffic 80-100ms)

15

Results – flow completion time

0 2 4 6 8 10
Capacity (Mbps)

0

10

20

30

40

50

60

70

80

90

FC
T

of
sh

or
tfl

ow
s

(R
TT

s)
1. Short flow
3. Short flow - coupled

Flow completion time (FCT) of a short flow, with and without ctrlTCP

Long Flow – 25 Mb, short flow - 200KB, capacity varied from 1 to 10 Mb

16

Conclusion

• Allows datacenter administrators to exert precise control over the relative
bandwidth share offered to coupled flows, with only minimal interfacing to the
kernel TCP code

• Implementation in the FreeBSD kernel and ns2 simulator
• Works with flows with heterogeneous RTTs
• Eliminates competition and reduces flow completion time
• Future work:

– by changing the increase/decrease behavior as a function of the number of flows in a
coupled group

– to investigate our solution on 10Gbps links while considering typical practical
challenges at high speeds such as CPU delay

17

Thank you!

Questions?

