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What is this about?

• In multitenant datacenter, the guest OSes of clients may be 
diverse and utilize an Internet-like mix of old and new TCP 
congestion control implementations

• This may put some users at a disadvantage, depending on how 
aggressively their congestion control probes for capacity
– unfair users may have an incentive to obtain a larger share of the capacity 

by opening multiple TCP connections à.unsatisfied customers!
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What is this about?

Sending rate of two VMs, with 1 flow in 
VM1 and 1 to 4 flows in VM2 
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Prior work

• Mechanisms such as Seawall [1], VCC [3] and AC/DC [2]  successfully 
achieve this sender-side control by running dedicated congestion control 
algorithms as part of the hypervisor infrastructure 
– But: how should the new algorithm that is running as part of the 

hypervisor communicate with the the guest OS?

• Seawall alone takes care of the congestion control
– CC implementations need to defer all congestion control decisions to the 

hypervisor (asking for allowance before sending a packet )_
– the sender and receiver side are altered, and bits from the header are re-

purposed to implement the necessary signaling

[1] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and B. Saha, “Sharing the data center network,” in Proc. of NSDI, 2011. 
[2] K. He, E. Rozner, K. Agarwal, Y. J. Gu, W. Felter, J. Carter, and A. Akella, “AC/DC TCP: Virtual congestion control enforcement for datacenter networks,” in Proc. of SIGCOMM, 2016 
[3] B. Cronkite-Ratcliff, A. Bergman, S. Vargaftik, M. Ravi, N. McKeown, I. Abraham, and I. Keslassy, “Virtualized congestion control,” in Proc. of the ACM SIGCOMM, 2016. 
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Prior work

• AC/DC do not require updating the guest OS at all, 
– which is a significant advantage: it does not require cooperation of tenants 

to update the OS (if they do bring their own OS), 
• which reduces burden and allows to enforce cooperative behavior

• Changes the receive window (rwnd) as a means to control TCP’s behavior
– A sender can therefore only increase the sending rate as quickly as the 

TCP implementation inside the guest OS allows 
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Prior work on congestion management

• Datacenter capacity management 
– Access is controlled at the edges (EyeQ), FairCloud (per flow queues

at the switches), Seawall, AC/DC, VCC
• Single-path congestion control coupling

– By sharing a number of state variables
• Multiplexing

– By merging application layer datastreams onto a single transport layer
connection

• Multi-path congestion control coupling
– MPTCP’s coupling assumes that flows could take a different path, and 

ideally also traverse different bottlenecks 
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Our contribution

• A new interface (ctrlTCP_int) to communicate between TCP 
in the guest OS and a hypervisor.
– A set of TCP connections are controlled via this interface

• Extended our ctrlTCP algorithm that emulates the behavior of 
a single TCP congestion controller
– Supports prioritization (for practical management of both 

inter- and intra-VM capacity allocation)

• Show the efficacy of our solution using both ns2 and 
FreeBSD
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CtrlTCP interface
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• A middle ground can be found by keeping the guest OS congestion control intact, 
yet allowing a controlling entity to overrule its decisions 

• ctrlTCP operates strictly on the control path: 
• communicates signals cc in the guest OS and the hypervisor 

• not needed to even examine or count the outgoing or incoming packets
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CtrlTCP algorithm

• Each TCP session communicates with an entity that we call a 
Coupled Congestion Controller (CCC) 

– typically makes decisions that combine the collected 
knowledge that it receives from all TCP instances that talk 
to it - thereby “coupling” them in some way

– A CCC can operate in a hypervisor or in an OS

S. Islam, M. Welzl, H. Kristian, D. Hayes, G. Armitage, and S. Gjessing, “ctrlTCP, reducing latency through coupled heterogeneous multi-flow TCP congestion control,”  IEEE GI 2018
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ctrlTCP
TCP Session CCC

register(c, p, cwnd, sshtresh) 

accept (cwnd, ssthresh) 
Initialization:

First conn: 
initialize a group

update(c, cwnd, sshthresh, state);

returns: cwnd, ssthresh, state
Update

Leave(c)
Leave
Remove entry from the
list
If last conn: delete group
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Changes in the TCP code

register(c, p, cwnd, sshtresh); 
returns: cwnd, ssthresh, state 

update(c, cwnd, sshthresh, state); 
returns: cwnd, ssthresh, state 

leave(c) 

Initialization: executed at the 
beginning of the session!

Update: executed whenever a TCP 
session newly calculates its cwnd

Leave: executed whenever a TCP 
session is terminated
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Evaluation
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• Implementation 
• FreeBSD 11 kernel with state shared across the freely available 

VirtualBox hypervisor 
• ns-2 simulator

the source code is available at: http://safiquli.at.ifi.uio.no/tcp-ccc/ 

Fairness between two VMs, with 1 flow in VM1 and 1 to 4 flows in VM2 across a 10Mbit/s⇥100ms bottleneck 
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Applicability of simulation results

Internet BDP (1500 byte packets) 

10 Gbit/s, 100 μs [1] 10 Mbit/s, 100 ms 83.3 

10 Gbit/s, 10..100 μs: [2] 1..10 Mbit/s, 100 ms 8.3 .. 83.3 

1 Gbit/s, 100 μs: [3] 10 Mbit/s, 10 ms 8.3 

1 Gbit/s, 250 μs: [4] 25 Mbit/s, 100 ms 208.3 

Referenced datacenter conditions are comparable to common Internet bandwidth X delay products 

[1] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan, “Data Center TCP (DCTCP),” ACM SIGCOMM, 2010
[2] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, “Timely: Rtt-based congestion control for the datacenter,” ACM SIGCOMM, 2015.
[3] A. M. Abdelmoniem, B. Bensaou, and A. J. Abu, “HyGenICC: Hypervisor-based generic IP congestion control for virtualized data centers,” IEEE ICC, May 2016
[4] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and F. R. Dogar, “Friends, not foes: Synthesizing existing transport strategies for data center networks,” ACM SIGCOMM, 2014 
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Results – mean Q length and loss ratio

Mean queue length and loss ratio as the RTT ratios between 2 flows is varied

minRTT 20ms, maxRTT 200ms, Bottleneck: 10Mb, preprocessed TMIX background Traffic (taken from 60 
minute trace of campus traffic of university of north Carolina – approximate load 50%, RTT of the background 
traffic 80-100ms)
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Results – flow completion time
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Conclusion

• Allows datacenter administrators to exert precise control over the relative 
bandwidth share offered to coupled flows, with only minimal interfacing to the 
kernel TCP code

• Implementation in the FreeBSD kernel and ns2 simulator
• Works with flows with heterogeneous RTTs
• Eliminates competition and reduces flow completion time 
• Future work:

– by changing the increase/decrease behavior as a function of the number of flows in a 
coupled group 

– to investigate our solution on 10Gbps links while considering typical practical 
challenges at high speeds such as CPU delay
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Thank you!

Questions?


